Open boundaries for the nonlinear Schrödinger equation
نویسندگان
چکیده
We present a new algorithm, the Time Dependent Phase Space Filter (TDPSF) which is used to solve time dependent Nonlinear Schrodinger Equations (NLS). The algorithm consists of solving the NLS on a box with periodic boundary conditions (by any algorithm). Periodically in time we decompose the solution into a family of coherent states. Coherent states which are outgoing are deleted, while those which are not are kept, reducing the problem of reflected (wrapped) waves. Numerical results are given, and rigorous error estimates are described. The TDPSF is compatible with spectral methods for solving the interior problem. The TDPSF also fails gracefully, in the sense that the algorithm notifies the user when the result is incorrect. We are aware of no other method with this capability.
منابع مشابه
Analytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity
Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...
متن کاملA Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations
This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...
متن کاملUnified approach to split absorbing boundary conditions for nonlinear Schrödinger equations: Two-dimensional case.
This paper aims to design local absorbing boundary conditions (LABCs) for the two-dimensional nonlinear Schrödinger equations on a rectangle by extending the unified approach. Based on the time-splitting idea, the main process of the unified approach is to approximate the kinetic energy part by a one-way equation, unite it with the potential energy equation, and then obtain the well-posed and a...
متن کاملv - in t / 9 61 10 02 v 1 4 N ov 1 99 6 Small - amplitude excitations in a deformable discrete nonlinear Schrödinger equation
Small-amplitude excitations in a deformable discrete nonlinear Schrödinger equation. A detailed analysis of the small-amplitude solutions of a deformed discrete nonlin-ear Schrödinger equation is performed. For generic deformations the system possesses " singular " points which split the infinite chain in a number of independent segments. We show that small-amplitude dark solitons in the vicini...
متن کاملAbsorbing boundary conditions for nonlinear Schrödinger equations.
A local time-splitting method (LTSM) is developed to design absorbing boundary conditions for numerical solutions of time-dependent nonlinear Schrödinger equations associated with open boundaries. These boundary conditions are significant for numerical simulations of propagations of nonlinear waves in physical applications, such as nonlinear fiber optics and Bose-Einstein condensations. Numeric...
متن کاملPeriodic Nonlinear Schrödinger Equation with Application to Photonic Crystals
We present basic results, known and new, on nontrivial solutions of periodic stationary nonlinear Schrödinger equations. We also sketch an application to nonlinear optics and discuss some open problems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 225 شماره
صفحات -
تاریخ انتشار 2007